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Abstract
We demonstrate theoretically that spin dynamics of electrons injected into a
GaAs semiconductor structure through a Schottky barrier possesses strong non-
equilibrium features. The electrons injected are redistributed quickly among
several valleys. Spin relaxation driven by the spin–orbital coupling in the
semiconductor is very rapid. At T = 4.2 K, injected spin polarization decays at
a distance of the order of 50–100 nm from the interface. This spin penetration
depth reduces approximately by half at room temperature. The spin scattering
length is different for different valleys.

1. Introduction

Electrical spin injection into a non-magnetic semiconductor structure is one of the most
complicated issues in the design of semiconductor spintronic devices [1–3]. A high efficiency
of spin injection in magnetic/non-magnetic semiconductor structures has been demonstrated
in the diffusive transport regime [4]. Also, in the ballistic transport regime, spin filtering
with a magnetic semiconductor can lead to nearly 100% spin injection [5]. However, at the
present stage spin-dependent properties of most magnetic semiconductors are limited by the
low temperature regime only, which strongly restricts their device application. Ferromagnetic
metal contacts possess a much higher Curie temperature and are more attractive for application
in room temperature spintronic devices. But, in conventional ohmic metal/semiconductor
contacts a large conductance mismatch [6] prevents efficient injection of spin-polarized carriers.
One of the solutions to this problem is to utilize a tunnelling barrier to increase interface
resistance between a ferromagnetic metal source and a semiconductor structure [7, 8]. This has
been demonstrated experimentally in several different designs [9–11]. Among these designs,
the Schottky contact attracts more attention for several reasons. Firstly, the barrier naturally
appears at the metal/semiconductor interface [12]. Secondly, it can be easily modified by an
interface doping layer to increase the tunnelling current. Additionally, spin-polarized electrons
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Figure 1. The potential profile together with the doping profile of the simulated structure at
T = 4.2 K and Vbias = 2 V.

can be injected into a semiconductor up to room temperature [10, 13], and a device structure
can be scaled down to the size of modern electronic devices.

Several different theoretical models have been utilized lately to describe spin injection
through a Schottky barrier [7, 8, 14, 15]. However, most of these approaches are based on
the assumption of quasi-equilibrium transport. Using an ensemble Monte Carlo simulation
method [15], we have demonstrated that near the Schottky barrier, charge and spin dynamics of
electrons are far from equilibrium. A strong electric field at the interface leads to redistribution
of electrons among several valleys of conduction band in the vicinity of the barrier. Due to the
coupling of electron spin with its spatial motion (spin–orbital coupling) [16], spin polarization
in the semiconductor dissipates very rapidly on a deep submicron length scale that is several
times shorter than the energy relaxation length. The spin scattering lengths are different in the
valleys of different symmetries.

2. Model

The device modelled is a spin Schottky diode of 1 µm length that consists of a ferromagnetic
metal contact and a semiconductor channel. The semiconductor channel is modulated-doped.
The doping profile together with the simulated potential profile for a reverse bias Vbias = 2 V
is shown in figure 1. The 30 nm n+-layer of the channel at the interface reduces the width of
the Schottky barrier and increases the efficiency of electron tunnelling from the ferromagnetic
source. On the right side of the device, a highly doped layer of 250 nm width is used to produce
an ohmic contact at the drain electrode. The remaining part of the channel is homogeneously n-
doped. The doping concentration is equal to 2.5×1018 cm−3 and 2.5×1016 cm−3 in the n+ and
n regions, respectively. The magnetization of the ferromagnetic contact is assumed orthogonal
to the metal/semiconductor interface. Such a structure can be considered as a simplification of
an existing spintronic device, spin-light-emitting diode (spin-LED) [17]. We emphasize that
the simplified structure is chosen to address spin dynamics near the Schottky barrier rather than
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functionality of a spin-LED. The latter is more complex and should include electron capture
in the quantum well and exciton recombination processes. We use Fe as the source contact of
spin-polarized electrons and GaAs as the device channel. These materials are widely utilized in
spintronic studies [1]. The Schottky barrier height in this case is taken as VB = 0.72 eV [18].

To simulate transport properties, we utilize the ensemble Monte Carlo simulation
approach [19]. It is a powerful tool that can account for details of a device structure and
address transport properties in different regimes. It has been successfully applied to study
hot electron transport in bulk GaAs [20]. The approach has also been used to study the
tunnelling phenomenon in ballistic electron emission microscopy [21] and also in Schottky
contacts [22, 15, 23].

In the model, we consider electron transport in the three non-equivalent valleys (�, L and
X ), where electron interactions with impurities, acoustic phonons and optic polar phonons are
taken into consideration for intra-valley scattering and interaction with optic non-polar phonons
for inter-valley scattering [24]. Other conventional details of the approach can be found in [19].
Here we focus on some assumptions used for the simulation of tunnelling through the barrier
and electron spin dynamics in the valleys.

In general, to describe spin injection from a ferromagnetic metal into a non-magnetic
semiconductor, one has to start with first-principle models [25]. The difficulty is that the metal
conduction band structure is very complex [26], and the effective mass approximation [27],
used for semiconductors, should be applied with much caution to avoid non-realistic results.
Within single particle approximation, the tunnelling current density from a metal contact into a
semiconductor is [28]

j = qgσ

(2π)3

∫
fm(E)(1 − fs(E))vx T (E) d3k, (1)

where q is an electron charge, gσ accounts for spin degeneracy, E is the electron energy, vx

is the x-component of the electron velocity, fm(E) and fs(E) are distribution functions in the
metal and semiconductor respectively, and T (E) is the transmission coefficient. Integration is
taken over the components of the electron wavevector, k. The transmission coefficient, T (E), in
equation (1) accounts for matching of materials at the metal/semiconductor interface and also
for tunnelling through the potential barrier [12] inside the semiconductor. There is no good
analytical model for electron transmission through the ferromagnetic metal/semiconductor
interface. Therefore, we try to separate its effect from the barrier tunnelling. Firstly, we assume
that only the majority electrons can be injected through the interface into the semiconductor.
Electrons from the �1 conduction band of the ferromagnetic iron (for the band structure
see [26]) can penetrate into a semiconductor for a much longer distance than other bands [25]
because of the better matching on the interface. The minority conduction band of �1 symmetry
is far above the barrier, and its contribution to spin injection is negligible. The next assumption
is that the transmission coefficient through the material interface can be factorized from the
barrier tunnelling coefficient which is described by the WKB approximation [29]. The total
tunnelling coefficient can therefore be written as

T (E) = Tint1e− 2
√

2m∗
h̄

∫ X
0

√
VB(x)−Ex dx Tint2, (2)

where m∗ is the electron effective mass in the semiconductor, and VB(x) is the barrier profile.
Tint1 and Tint2 account for metal/semiconductor and semiconductor/semiconductor interfaces of
the barrier, respectively. It can be shown easily that equation (2) is exact for a thick rectangular
barrier [25]. One can try to account for the interface transmission coefficient Tint1 using
different energy dispersion relations and different electron masses in metal and semiconductor
parts [14]. However, we make further simplifications and assume that Tint1 is constant within
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the energy range where tunnelling through the barrier is most efficient, and Tint2 is close to one
according to the WKB approximation. In this case, interface transmission coefficient, Tint1, can
be moved out of the integral in equation (1). Using the parabolic energy dispersion relation in
the distribution function, fm(E), and neglecting fs(E), one can rewrite equation (1) as

j = A∗
σ T

kB

∫ ∞

−EF

T (Ex) ln

(
1 + e

− Ex
kB T

)
dEx , (3)

where A∗
σ is the modified Richardson constant, kB is the Boltzmann constant, T is the lattice

temperature, Ex is the x-component of electron energy with respect to the Fermi level EF, and
T (Ex) is the tunnelling coefficient. Equation (3) is similar to the standard formula utilized in
electronics [12], however, it accounts for the Fermi–Dirac electron energy distribution in the
metal contact. The conventional Richardson constant [12] should be corrected to include spin
non-degeneracy and the interface transmission coefficient Tint1. With equation (3), tunnelling
injection through the Schottky barrier can be efficiently modelled using the Monte Carlo
method [22, 15, 23]. We have expanded the method described in [15] to account for the
important aspects of 3D injection. For a given potential profile, the energy distribution of
electrons tunnelled into the semiconductor during the time interval �t is calculated using
equation (3). We assume that the tunnelling barrier is one dimensional, and therefore, it affects
only the x-component of the electron energy. The initial states of the successfully tunnelled
electrons are generated based on the Fermi–Dirac energy distribution on the metal side of
the barrier. In both, metal and semiconductor, energy dispersion relations are assumed to be
parabolic. The spin state of the electrons injected is conserved during the tunnelling and starts
to evolve under the influence of a spin-dependent Hamiltonian during the drift motion in the
semiconductor channel of the device.

To describe the spin dynamics of injected electrons, we take into account the spin–orbit
coupling due to the inversion asymmetry of GaAs crystal [16]. This interaction, together with
electron momentum scattering events, produces rotational spin dephasing in a system of spin-
polarized electrons [30]. In the model, it is implemented as the spin rotation of each electron in
the driving field during the electron free propagation between two scattering events. The initial
states of electrons are obtained from the injection procedure. The profile of the Schottky barrier
is determined by the self-consistent solution of charge carrier motion and the Poisson equation.
To describe the spin of a single electron, we use a single electron spin density matrix [31, 32]
representation that is equivalent to the spin polarization vector description [33, 34]. Details
of the simulation procedure applied for spin transport in low dimensional structures can be
found in [31]. For the electron wavevector in the vicinity of points of high symmetry within the
Brillouin zone, an analytical form for corrections to the effective mass Hamiltonian due to the
spin–orbit interaction has been derived in [16]. Near the bottom of the valleys, the spin–orbit
Hamiltonians can be written in the following form [35]

H� = α�(kxσx(k
2
y − k2

z ) + kyσy(k
2
z − k2

x) + kzσz(k
2
x − k2

y)) (4)

in the �-valley,

HL = αL/
√

3(σx(ky − kz) + σy(kz − kx) + σz(kx − ky)) (5)

in the L-valley located along the [111] direction in the crystallographic axes, and

HX = αX(σzkz − σyky) (6)

in the X-valley located along the [100] direction. In equations (4)–(6), σα are the spin Pauli
matrices [29], kα the components of an electron wavevector, and α� , αL and αX the spin–orbital
coupling coefficients. Explicit forms of spin–orbit Hamiltonians for other equivalent valleys of
L and X symmetries can be obtained by appropriate rotation of the coordinate system. In the
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Figure 2. Populations of electrons in different valleys injected into the device (a), average energies
of injected electrons (b) at T = 4.2 K, and Vbias = 2 V.

model, we assume that one of the appropriate equations in equtions (4)–(6) can be applied to
the electrons in a given valley. However, it should be noted that these equations are correct only
near the bottoms of the valleys. The spin–orbit coupling coefficients utilized in simulations are

α� = 28 eV Å
3

[36], αL = 0.27 eV Å [37], and αX = 0.087 eV Å [36]. We would like to
emphasize that due to a lack of information on spin coupling parameters in the upper valleys
their actual values may be different.

3. Simulation results and discussion

We simulated steady-state injection of spin-polarized electrons into the device shown in figure 1
for T = 4.2–350 K, and Vbias = 1–3 V. The concentration and average energy profiles
of electrons injected at T = 4.2 K and Vbias = 2 V are shown in figures 2(a) and (b).
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Near the metal/semiconductor interface, electrons injected into the semiconductor are strongly
accelerated by the interface electric field. At a distance of about 20–30 nm from the interface,
the intervalley scattering mechanism becomes dominant, and electrons are redistributed among
the valleys. As demonstrated in previous studies [20], the electron population becomes even
higher in the upper valleys than in the �-valley. Scattering of electrons back to the �-valley
becomes evident after travelling for a distance of the order of several hundred nanometres.
These profiles remain similar for the whole ranges of voltage and temperature, though actual
values of concentration and energy change. At low temperature, practically all of the electrons
are injected by tunnelling near the Fermi level in the metal contact, while at temperatures of
∼50–70 K, thermal assisted tunnelling starts to play a role. The contribution of the thermionic
emission becomes noticeable only at temperatures above 150 K.

To characterize spin properties of injected current, we use electron spin polarization,
defined as

Sα =
∑

i

Tr(σαρi
σ )

/∑
i

Tr(ρi
σ ), (7)

and current spin polarization

Pα =
∑

i

vi
x Tr(σαρi

σ )

/ ∑
i

vi
x Tr(ρi

σ ), (8)

where ρi
σ is the single electron spin density matrix [29] and vi

x is the x-component of velocity
of the i th particle. In equations (7) and (8), sums are taken over all the injected particles
located within a small volume d3x near the position x. Equations (7) and (8) are similar to the
standard definitions of particle and flux polarization utilized in the literature [1, 38]. In general,
electron spin polarization is easier to measure experimentally, for example, using the oblique
Hanle effect [11]. However, in a device, electrons injected represent only a small fraction of the
total number of carriers. In the structure studied, see figure 1, total electron spin polarization is
negligible except for the depletion region. Current spin polarization, equation (8), by definition,
cancels the effect of background electrons in the device channel that do not contribute to the
current. However, it is not clear how this characteristic can be measured. One of the possible
methods is discussed in [39].

In simulations, we observe that both characteristics of spin polarization decay very rapidly
in a length scale of the order of 50–100 nm. Simulated profiles at T = 4.2 K and Vbias = 2 V
are shown in figure 3. Spin dynamics, controlled by spin–orbit coupling, equations (4)–(6),
and electron momentum distributions are different in different valleys. With the given set of
transport parameters, we find that spin characteristics in the upper valleys decay about twice
as fast as those in the �-valley for the temperature and applied bias ranges, T = 4.2–350 K
and Vbias = 1–3 V. In the �-valley, both electron and current spin polarization profiles can
be fitted by exp(−(x/x0)

α), where coefficient α ∼ 2–3, rather than by the linear exponential
decay function with α = 1. This dependence cannot be explained within the drift-diffusion
approximation [38, 40]. To characterize spin dephasing, we use electron and current spin
scattering lengths which are defined as the lengths where electron spin and current spin
polarizations decay to 1/e of their initial values, respectively. With the temperature increment,
both spin scattering lengths decrease monotonically, see figure 4. At room temperature, spin
scattering lengths in the �-valley are more than two times shorter than at T = 4.2 K. Evident
bias voltage dependence of spin scattering lengths is observed for electrons in the �-valley only,
see figure 5. Similarly to the studies using drift-diffusion models [38, 41, 40], our results show
that at higher bias, electron spin polarization penetrates more deeply into the semiconductor.
However, this dependence is weak. For the current spin scattering length, we observe a reverse
tendency. It becomes shorter at higher bias.



Spin dynamics in a compound semiconductor spintronic structure with a Schottky barrier 1541

X, nm

Γ-valley
 L-valley
 X-valley

(a)

(b)

0.0 50.0 100.0 150.0
0.0

0.2

0.4

0.6

0.8

1.0

X, nm

0.0 50.0 100.0 150.0

0.2

0.4

0.6

0.8

1.0

C
ur

re
nt

 s
pi

n 
po

la
riz

at
io

n
E

le
ct

ro
n 

sp
in

 p
ol

ar
iz

at
io

n

Figure 3. Current spin polarization profile (a), and electron spin polarization profile (b) simulated
at T = 4.2 K and Vbias = 2 V.

Signatures of hot spin-polarized carrier transport in structures with Schottky barriers have
been observed recently [42]. Our simulations confirm that spin-polarized transport can be
detected in spin-LED structures. In a more detailed comparison of simulated results with
experimental data on spin injection in spin-LEDs, we find that the model provides qualitatively
consistent spin scattering length scales with some overestimation of the spin dephasing effect.
The latter can be due to different setups in the simulations and experimental study, and also due
to not well matched transport parameters. Transport parameters within the range accessible
in the literature give variations in electron and current spin scattering lengths of the order of
10–15%. The most crucial are spin–orbit coupling coefficients. For the L and X valleys, only
theoretical estimations [36, 37] are available. For the �-valley, the measured value of spin–orbit
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Figure 4. Temperature dependences of current spin scattering length (a), and electron spin
scattering length (b) at Vbias = 2 V.

coupling coefficient corresponds to its minimum. However, in the simulations, electrons in this
valley possess high kinetic energy, see figure 2(b). In this case, the coupling coefficient should
be modified. We have also accounted for spin rotation in a homogeneous external magnetic
field that is utilized in experiments with spin-LEDs. For simplicity we used isotropic g-factors
g∗
� = −0.44 [43], g∗

L = 2 [44], and g∗
X = 2. However, we found that the effect is negligible

for magnetic fields up to H = 2 T.

4. Conclusion

In conclusion, we simulated injection of spin-polarized electrons through a Schottky barrier
into a GaAs device channel. For the whole temperature range, T = 4.2–350 K, and the
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Figure 5. Current spin and electron spin scattering lengths in the �-valley as functions of applied
bias at T = 4.2 K.

applied bias range, Vbias = 1–3 V, we observed hot-electron transport features. Electrons
injected through the barrier quickly redistributed among the semiconductor valleys. On the
length scale of the order of 200–300 nm from the metal/semiconductor interface, upper valleys
(X and L) are more populated by the injected electrons than the �-valley. Electron and current
spin polarizations injected decay in a very short length scale of the order of 50–100 nm. Within
the model developed, spin polarization characteristics decay faster in the upper valleys.
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